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Sum~r~ 

This paper describes the onset of the influence of entangle- 
ment effects on the mobility of polymer chains in a poly- 
disperse melt. Extending a scaling relation between the cri- 
tical molecular mass of homodisperse melts and segment number 
density yields in the case of polydisperse melts a functional 
equation for the critical chain length. The case of the nor- 
mal distribution will be solved and discussed. 

Introduction 

The change in the molecular mass M dependence of viscosity 
of monodisperse polymer melts occurs over a relatively nar- 
row range of molecular masses around the critical molecular 
mass Mc. The M c value is obtained from the intersection of 
straight lines drawn through the two branches of the log ~ - 
- log M curve. For M<M c the relation~ M reflects the 
Rouse chain behaviour, whereas for M>Mc the power dependence 

M3.4 reflects features attributed to entanglement con- 
straints which act effectively as an open-ended tube which 
surrounds any given macromolecule along its average contour. 
The chain moves inside the tube by local reptetion (I). 
Otherwise, in the case of polydisperse polymer melts it 
exists still the unsettled question concerning the role of 
short chains and their contributions to the formation of the 
tube field. Further, it would be of interest to examine a 
relation between the critical molecular mass of the polydis- 
perse sample and characteristics of the molecular mass distri- 
bution (number-average molecular mass, etc.). 
We will show that this question can be attacked by applying 
a scaling relation between the critical molecular mass of 
homedisperse melts and segment number density (4) to the case 
of polydisperse melts if in the latter case the shorter chains 
are expected to behave like solvent. 

Theo ry  

The lateral tube dimension of a homodisperse sample, do, may 
be calculated by means of a microscopic theory of the topolo- 
gical constraints in melts or concentrated solutions (2). The 
model is Sased on the screening concept of the global topology 

* To whom offprint requests should be sent 



54 

effects and takes into account the conservation of the local 
topology. It yields the relation 

d o = 8.5 (nsl3)'S/2 1 (S) 

with n s the segment number density and 1 the statistical seg- 
ment l~ngth. Combining Eq. (S) with the expression for the 
plateau modulus GNO of the melt according to the Doi/Edwards 
theory (3) yield an universal power law for GNO deduced by 
Graessley and Edwards (4). Combination of Eq. (1) with a 
phenomenologically deduced expression for the critical mole- 
cular mass in bulk polymers (4), 

_ K 2 
Mc I = ~ss (nsl3) ' K2 = 0.0049 , (2) 

(M s is the molecular mass of a statistical segment) 

gives for the r.m.s, end-to-end distance R c of a chain with 
the critical molecular mass Mc the following relation: 

R c ~ 1.7 d o (3) 

Eq. (3) means that already for Rc/do~ I the mobility of any 
chain in lateral direction is effectively confined by the 
collective effect of all neighbouring chains. This behaviour 
may hardly be caused only by the action of single entangle- 
meEts. 
This shortly sketched picture will now be used for studying 
the polydisperse case. 
In the case of a polydisperse polymer melt we assume that 
the collective constrainSr~ effect due to a molecule with 
the molecular mass M>M c^tpJp is caused by the topological 
constraints of all n~ighbouring chains with M ~ MctPJ. The 
determination of th~ critical molecular mass of the poly- 
dispe~s~ melt, M ctp#, will be our aim. All the chains with 
M~M c~ #P exhibit Rouse behaviour and do not contribute to 
the forming of tubes according to Eq. (I). Therefore, we 
have to replace the local segment number density n s by its 
reduced value (ns') of the non-Rouse part of the melt (Fig. 
I): Z 

= ~-~ n s w(~) (4) n s ' 
l , 

N=N c (P) 

M~P~ M 

Figure I 

All c~a~ns with 
M ~Mc~P exhibit Rouse 
behaviour. Otherwise, 
all c~a%ns with 
M~ Mc PJ contribute to 
the forming of tube- 
-like configurational 
constraints. 
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~(p)_F~ (P)~M3 c --L=c . ~ denotes the number of segmon~s of a macro- 
molecule with the critical molecular mass MctP) ( [...S is 
the largest integer which is smaller than the ratio within 
the brackets). Z is the total segment number and w(N) charac- 
terizes the molecular size distribution of the dispersed mole- 
cular mass system. It is normalized according to Eq. (5). 

Z 

,' w(N) = 1 (5)  
N=I 

Eqn. (4) and (5), in combination with Eq. (2), yield)the fol- 
lowing equation for the critical molecular mass M c P : 

m c $(mc, {w(N)~ ) = 1 (6) 

In Eq. (6) ) '  
*(mc, {w(N)~ ) = w(N) (7) 

i NANc(P) 
and mcm Mc(P)/Mc is the ratio of the critical molecular mass 
of the polydisperse to the monodisperse melt. The general so- 
lution of Eq. (6) is 

m c = m c ( ( w ( N ~ )  = mc( ~ ,  ~ ,  ~ i  ) (8) 

where ~n is the number-average and Mw the weight-average mole- 
cular mass, and ~i represents the higher molecular averages. 
The case of the most probable (or the rsndom) distribution 
gives 

w(N) = N ~ N ' I  (1 . ~ ) 2  (9) 

where the number-average of structural units, ~n = ~n/Ms! 
is equal to I/(I -%). The correspondin 6 weight-average Is 
~w = (I +~)/(I -~). Inserting of Eq. (9) into Eq. (7) 
gives 

(mcNc-1) 
$(m c) = ( (1 -~) m c N O +oL)~ (10) 

where N~[M~/M~ denotes the critical number of segments in 
the mon~disp~rs~- case. 

Discussion 

Qualitatively, it can be shown that a solution of Eqn. (6), 
(7) and (10) exists only in the case of distributions with 
number-average molecular weights ~2 ~. The quantity ~ 
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characterizes such a distribution where the onset of a solution 
~c according to Eq. (6) starts ~bifurcation), and the relation 

>M c holds. In the case ~n~M~, Eqn. (6), (7) and (10) exhi- 
bit two solutions mc but only t~e smaller solution has the phy- 
sical meaning. With increasing M~ (i.e. decreasing part of 
Rouse chains in the distribution), m c tends to unity (Fig. 2) 
whereas the second (unphysical) solution goes to infinity. 
As an example, Fig. 2 illustrates a melt characterized by N c = 
100 in the monodisperse case and distributed according to Eq. 
(9) in the polydisperse case. The onset of collective 
constraints according to the criteria of Eq. (2) or (3) and to 
Eq. (6) starts at a random distribution characterized by the 
number-average ~n~(~/Ms ) = 118 and with the solution mc~ 
mc(~n=~) = 1.92 . That means, that.a~l chains with a number 
of structural units smaller than NctPJ = 192 exhibit Rouse be- 
heviour and do not contribute to the forming of tubes. The 
corresponding weight-average of structural units is ~w = 235. 
With increasing number-average ~n the ratio m c approaches to 
unity. In this case, the number of Rouse chains goes to zero. 

/ 
o 

Pi~ure2 

Illustration of the onset (curve b) of a solution of the 
Mc~P~ determining equation (N c = 100, w(N) = Eq. (9)): 

a no solution, N n = 111 (~ = 0.9910) 

b m c = mc* = 1.92, N n = NJ = 118 (~ = 0.9915) 

physical solution: 

m c = 1.60, Nn = 125 (~= 0.9920) 

Summa ri z e 

We derived a criterion for the onset of non-Rouse behaviour in 
the dynamics of polydisperse melts. We used the picture that 
the large scale motions of individual chains longer than the 
critical chain length are restricted by the presence of 
(enough) neighbou~ing chain contours (exceeding the critical 
length), and that these tube-like restrictions are topological 
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in origin, having to do with the u~crossability of the chain 
contours. Eqn~ (I) - (4) reflect this idea. 
Further, Eq. (4) contains the idea that the communal topolo- 
gical interacti@n@ (entanglements) between large (N~ Nc~PJ) 
or small (N~ NcCP)) chains are not equally effective as ob- 
stacles for the motion.of the interacting pair and only the 
molecules with N> Nc ~pJ act as tube-forming units. 
It could be shown that the onset of tube-like topological 
constraints (in dependence of the degree of polydlspersiSy~ 
corresponds to the bifurcation of the solution of the Mc ~pJ 
determining equation. 
Non-Rouse behaviour of the melt is predicted.f~r distributions 
with~n>M c and on 9 ~ets the relation~n<Ic Lp ~. The dif- 
ference between Mc~PJ and M c increases with increasing degree 
of polydispersity. (p) 
The onset of a solution M c according to Eq. (6) can be 
described in a similar way using a more general molecular 
size distribution, but the mathematics will become more com- 
plicated. 
The presented concept, including the case of random distri- 
bution, has been successfully applied in the explanation of 
the experimentally observed onset of non-Rouse dynamics (5) 
in melts of hydrogen-bonded poly(oxypropylene) chains. 
The assumption that the short chains do not cooperate with 
the long chains for supporting the tube wall has been re- 
cently used (6) to derive a mole-basis blending law for the 
relaxation spectrum. It gives a better prediction of the 
terminal viscoelastic properties of polymer blends in the 
entangled state than does the weight-basis blending law. 
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